

Correction to "Computation of Lumped Microstrip Capacities by Matrix Method—Rectangular Sections and End Effect"

ANDREW FARRAR AND A. T. ADAMS

In the above correspondence,¹ (1) is difficult to interpret in the form given. In this equation, the field point (x_i, y_i, z_i) is at the edge of subsection ΔS_i , and the source point (x_j, y_j, z_j) is at the center of subsection ΔS_j . Also, to (1) should be added a negative expression similar to that given in the brackets with $(2n-2)^2$ replaced by $(2n)^2$, in order to include the images below the ground plane.

For wide strips ($W/H > 2.5$), the data in Fig. 4 were found to be in error due to computational difficulties. The computational method has been improved, and the corrected data are shown in Fig. 1.

Manuscript received and revised December 6, 1971.

A. Farrar is with General Electric Company, Heavy Military Electronics System, Syracuse, N. Y. 13201.

A. T. Adams is with the Department of Electrical Engineering, Syracuse University, Syracuse, N. Y.

¹ A. Farrar and A. T. Adams, *IEEE Trans. Microwave Theory Tech.* (Corresp.), vol. MTT-19, pp. 495-496, May 1971.

Fig. 1. Excess capacity of open-circuited microstrip.

ACKNOWLEDGEMENT

The authors wish to thank Dr. P. Sylvester, McGill University, Montreal, P. Q., Canada, and M. Maeda, Central Research Laboratory, Tokyo, Japan, for their helpful comments on this problem.

Computer Program Descriptions

FINPLT: A Finite-Element Field-Plotting Program

PURPOSE: FINPLT draws smooth contours on a Calcomp digital plotter for any surface for which potential values are known on an arbitrary set of points.

LANGUAGE: Fortran IV, G level; source deck length 750 cards.
AUTHORS: Z. Csendes and P. Silvester, Department of Electrical Engineering, McGill University, Montreal 110, P.Q., Canada.

AVAILABILITY: ASIS—NAPS Document No. NAPS-01705. Copies of the source deck may be purchased from the authors for U. S. \$20.

DESCRIPTION: FINPLT was written to complement the authors' dielectric-loaded waveguide-analysis program [1], and utilizes a compatible geometrical data format. Accordingly, the field region must be divided into triangular elements, as described in [1], and the potential values specified on a set of Newton-Cotes interpolation nodes for each element.

In applications to fields arising from other sources, it is best to first generate the interpolation point set with the sophisticated geometric routines in FINPLT and then determine the potential values corresponding to it.

PRINCIPLE OF OPERATION

By using two-dimensional Newton-Cotes interpolation polynomials, any function of two independent variables may be approximated in any polygonal region by dividing the region into triangles. Although these polynomials may be written to an arbitrary order, only second-order polynomials accommodate a simple algorithm that yields curved contours. In standard quadratic form, taking $\{\xi\}$ to be triangular coordinates, $\{\phi_i\}$ to be the potential values at the in-

terpolation points, and P to be the potential, this polynomial is

$$\xi_i^2 A_i + \xi_i (B_{1i} + \xi_j B_{2i}) + (P + C_{1i} + \xi_j C_{2i} + \xi_j^2 C_{3i}) = 0 \quad (1)$$

where $i = 1, 2, 3, j = i \bmod (3) + 1$, and

$$A_i = 2(\phi_a + \phi_f - 2\phi_e)$$

$$B_{1i} = -\phi_a - 3\phi_f + 4\phi_e$$

$$B_{2i} = 4(\phi_f + \phi_b - \phi_e - \phi_a)$$

$$C_{1i} = \phi_f$$

$$C_{2i} = 4\phi_e - \phi_a - 3\phi_f$$

$$C_{3i} = 2(\phi_a + \phi_f - 2\phi_e)$$

Here, (a, d, f) and (b, c, e) are the i th cyclic permutations of $(1, 4, 6)$ and $(2, 3, 5)$, respectively. By setting P equal to a constant in (1) and using the relationships

$$x = x_1 \xi_1 + x_2 \xi_2 + x_3 \xi_3$$

$$y = y_1 \xi_1 + y_2 \xi_2 + y_3 \xi_3$$

$$\xi_1 + \xi_2 + \xi_3 = 1 \quad (2)$$

where (x_i, y_i) are the coordinates of the i th vertex of the triangle, (1) can be solved for the locus of points on the equipotential contour.

Although first- to fourth-order finite-element triangles may be supplied as data, in order to use (1), FINPLT determines N^2 second-order subelements in each N th-order element by evaluating the coordinates and potential values for a set of points midway between the previous set. In each subelement, the intersections of the potential with the sides of the triangular subelement are determined and the three triangular coordinates stepped off in specified intervals, from the smallest value found with the intersection of the potential with the sides to the largest.

Since a quadratic expression is solved, the equipotential contours are not necessarily single-valued at any value of the x coordinate. Many ways of distinguishing points on the upper and lower branches of the contours have been considered, but none have proved to be fool-

Manuscript received September 14, 1971; revised November 23, 1971.

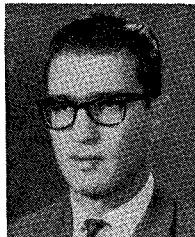
For program listing, order NAPS-01705 from ASIS National Auxiliary Publications Service, c/o CCM Information Corporation, 909 Third Avenue, New York, N. Y. 10022; remitting \$2.00 per microfiche or \$5.00 per photocopy.

proof in all cases. The method used in FINPLT is to take each point and compare its coordinates to the point with the next larger value of the x coordinate. If both the x and y coordinates of the next point are close enough to that of the first point, then the point is accepted to be plotted on that line; if it is too far from the first point, it is left to be plotted on another line.

Clearly, the success of this method is dependent on the value of "close enough" used in the process. In FINPLT the value used is three times the maximum minus the minimum coordinate divided by the number of steps of triangular coordinate taken.

RESULTS AND COMPUTING TIMES

Examples of the type of results FINPLT produces may be found in [2], [3] where all of the field plots were drawn by FINPLT. Notice that the contour plots are perfectly smooth for well-behaved fields,


but that discontinuous changes in the derivative can occur in regions where the field changes rapidly. This is not the fault of FINPLT, but indicates that too few finite-element triangles were used to approximate the field in that region.

In order to do a typical plot, say a six fourth-order triangle problem with 30 equipotential lines, FINPLT requires about 30 s of central processing unit (CPU) time on an IBM 360/75 and about 6 min of time on a Calcomp 663 digital plotter.

REFERENCES

- [1] Z. Csendes and P. Silvester, "Dielectric loaded waveguide analysis program," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, p. 789, Sept. 1971.
- [2] ———, "Numerical solution of dielectric loaded waveguides: I—Finite-element analysis," *IEEE Trans. Microwave Theory Tech. (1970 Symposium Issue)*, vol. MTT-18, pp. 1124-1131, Dec. 1970.
- [3] ———, "Numerical solution of dielectric loaded waveguides: II—Modal approximation technique," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 504-509, June 1971.

Contributors

Ali E. Atia (S'67-M'69) was born in Cairo, United Arab Republic, on August 10, 1941. He received the B.S. degree with honors from Ain Shams University, Cairo, in 1962, and the M.S. and Ph.D. degrees from the University of California, Berkeley, in 1966 and 1969, respectively, all in electrical engineering.

From 1962 to 1964 he was a Lecturer in the Department of Electrical Engineering, Ain Shams University. From 1965 to 1968 he was a Research Assistant in the Electronics Research Laboratory, University of California. From 1968 to 1969 he was a Teaching Fellow and Assistant Professor in the Department of Electrical Engineering and Computer Sciences, University of California. He is presently a Member of the Technical Staff, COMSAT Laboratories, Clarksburg, Md., where he is engaged in the development of various microwave subsystems for communication satellite transponders.

William J. Ince was born in London, England, in 1933. He received the B.Sc. degree with honors in physics from the University of Manchester, Manchester, England in 1955, and the S.M. and Ph.D. degrees in electrical engineering from the Massachusetts Institute of Technology, Cambridge, Mass., in 1965 and 1969, respectively.

From 1955 to 1959 he was employed by E.M.I. Electronics Ltd., Hayes, England, where he worked on infrared homing devices for guided weapons and on airborne radar display systems. From 1959 to 1960 he was with the Raytheon Co., Maynard, Mass., where he worked on transistor circuit design. Since December 1960 he has been with the Array Radars Group, M.I.T. Lincoln Laboratory,

Lexington, Mass., where he has been concerned with the design of solid-state receivers and ferrite devices. In 1969 he was appointed Assistant Professor of Electrical Engineering at M.I.T.

Dr. Ince is a fellow of the British Institute of Physics and the Physical Society.

Jan G. Kretzschmar was born in Oostende, Belgium, on June 24, 1942. He received the Electrical Engineering degree and the certificate for nuclear physics from the Catholic University of Leuven (K.U.L.), Leuven, Belgium, in 1965 and 1966, respectively. In 1969 he received the Doctor in applied sciences degree from the same University.

In 1970 he worked for two months with Prof. J. B. Davies, University College, London, while from September 1970 to September 1971 he was an ESRO-NASA Postdoctoral Fellow in the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. He is presently at the Catholic University of Leuven, where he has been a Research Assistant since 1965.

Dr. Kretzschmar is a member of the Koninklijke Vlaamse Ingenieursvereniging (K.V.I.V.).

Raj Mittra (S'54-M'57-SM'69-F'71), for a photograph and biography please see page 197 of the February 1972 issue of this TRANSACTIONS.